题目内容
已知sin(α+
)=
,cos(
-β)=
,且-
<α<
,
<β<
,求cos(α-β)的值.
| 3π |
| 4 |
| 1 |
| 7 |
| π |
| 4 |
| 4 |
| 5 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
分析:由已知的条件求得α+
、
-β的范围,利用角三角函数的基本关系求得cos(α+
)、sin(
-β)的值,再由cos(α-β)=-cos(α-β+π)=-cos[(α+
)+(
-β)],利用两角和的余弦公式求得结果.
| 3π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
解答:解:∵-
<α<
,
<β<
,∴
<α+
<π,-
<
-β<0.…(2分)
又∵sin(α+
)=
,cos(
-β)=
,
∴cos(α+
)=-
,sin(
-β)=-
.…(6分)
∴cos(α-β)=-cos(α-β+π)=-cos[(α+
)+(
-β)]=-cos(α+
)cos(
-β)+sin(α+
)sin(
-β)
=
×
+
×(-
)=
.…(12分)
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 2 |
| 3π |
| 4 |
| π |
| 2 |
| π |
| 4 |
又∵sin(α+
| 3π |
| 4 |
| 1 |
| 7 |
| π |
| 4 |
| 4 |
| 5 |
∴cos(α+
| 3π |
| 4 |
4
| ||
| 7 |
| π |
| 4 |
| 3 |
| 5 |
∴cos(α-β)=-cos(α-β+π)=-cos[(α+
| 3π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
=
4
| ||
| 7 |
| 4 |
| 5 |
| 1 |
| 7 |
| 3 |
| 5 |
16
| ||
| 35 |
点评:本题主要考查同角三角函数的基本关系,两角和的余弦公式的应用,属于中档题.
练习册系列答案
相关题目
已知sin(α+
)+sinα=-
,-
<α<0,则cos(α+
)等于( )
| π |
| 3 |
4
| ||
| 5 |
| π |
| 2 |
| 2π |
| 3 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|