题目内容
2.若数列{an}前n项和为Sn,a1=a2=2,且满足Sn+Sn+1+Sn+2=3n2+6n+5,则S47等于2209.分析 由题意易得数列{an+an+1+an+2}是公差为6的等差数列,可得S47=a1+a2+(a3+a4+a5)+…+(a45+a46+a47),由等差数列的求和公式计算可得.
解答 解:由Sn+Sn+1+Sn+2=3n2+6n+5可得Sn-1+Sn+Sn+1=3(n-1)2+6(n-1)+5,
两式相减可得an+an+1+an+2=6n+3,
∴数列{an+an+1+an+2}是公差为18的等差数列,
令n=3可得a3+a4+a5=21,
∴S47=a1+a2+(a3+a4+a5)+…+(a45+a46+a47)
=4+15×21+$\frac{15×14}{2}$×18=2209,
故答案为:2209.
点评 本题考查等差数列的和求和公式,整体法是解决问题的关键,属中档题.
练习册系列答案
相关题目
12.已知(1-x)(1+2x)5,x∈R,则x2的系数为( )
| A. | 50 | B. | 20 | C. | 30 | D. | 40 |
10.
执行如图所示的程序框图,若输入的M的值为55,则输出的i的值为( )
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
17.在平面区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$内任取一点P(x,y),则(x,y)满足2x+y≤1的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |