题目内容
数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N)时,证明从n=k到n=k+1的过程中,相当于在假设成立的那个式子两边同乘以( )
| A、2k+2 | ||
| B、(2k+1)(2k+2) | ||
C、
| ||
D、
|
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:写出n=k、n=k+1时,左边的结论,即可求解.
解答:
解:n=k时,左边=(k+1)(k+2)…(k+k),
n=k+1时,左边=(k+2)…(k+k)(k+k+1)(k+k+2),
∴证明从n=k到n=k+1的过程中,相当于在假设成立的那个式子两边同乘以
.
故选:D.
n=k+1时,左边=(k+2)…(k+k)(k+k+1)(k+k+2),
∴证明从n=k到n=k+1的过程中,相当于在假设成立的那个式子两边同乘以
| (2k+1)(2k+2) |
| k+1 |
故选:D.
点评:数学归纳法的基本形式:设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基);2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=(
) ax2+bx(a≠0).若函数f(x)与g(x)的图象有且仅有两个公共点,坐标从左至右记为(x1,y1),(x2,y2),给出下列命题正确的是( )
|
| 1 |
| 2 |
| A、若a>0,则x1+x2<0,y1-y2>0 |
| B、若a<0,则x1+x2>0,y1-y2>0 |
| C、若a<0,则x1+x2<0,y1-y2符号无法确定 |
| D、若a<0,则x1+x2>0,y1-y2符号无法确定 |
已知定义在R上的函数f(x),g(x)满足:①f(x)-ax•g(x)=0,②g(x)≠0③
+
=
,④f′(x)•g(x)<f(x)•g′(x),设数列{
}(n∈N+)的前n项和为Sn,则Sn的取值范围是( )
| f(1) |
| g(1) |
| f(-1) |
| g(-1) |
| 5 |
| 2 |
| f(n) |
| g(n) |
A、(0,
| ||
B、[
| ||
C、[1,
| ||
D、[
|
若a=2
,b=3
,c=log32
,则( )
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| A、a>b>c |
| B、b>a>c |
| C、c>a>b |
| D、b>c>a |
△ABC中,a、b、c分别是角A、B、C的对边长,若a、b、c成等比数列,且a2=(a+c-b)•c,则角A等于( )
| A、30° | B、45° |
| C、60° | D、120° |
若等差数列{an}的前n项和为Sn,且Sn的最大值仅为S7,则下列说法错误的是( )
| A、等差数列{an}中,公差d<0 |
| B、等差数列{an}中,首项a1>0 |
| C、等差数列{an}中,an的最大值为a7 |
| D、等差数列{an}中,当正整数n≥8时,an<0 |
| A、2 | ||
| B、5 | ||
C、
| ||
D、
|
用反证法证明某命题时,对结论:“自然数a,b,c都是偶数”,正确的反设为( )
| A、a,b,c中至少有一个是奇数 |
| B、a,b,c中至多有一个是奇数 |
| C、a,b,c都是奇数 |
| D、a,b,c中恰有一个是奇数 |
在平面直角坐标系中,以点(1,1)为圆心,以
为半径的圆在以直角坐标系的原点为极点,以ox轴为极轴的极坐标系中对应的极坐标方程为( )
| 2 |
A、ρ=2
| ||||
B、ρ=2
| ||||
C、ρ=2
| ||||
D、ρ=2
|