题目内容
正项数列{an}满足an2-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=
,设数列{bn}的前n项和Tn,求Tn+
[
+
].
(1)求数列{an}的通项公式an;
(2)令bn=
| 1 |
| (n+2)an |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
考点:数列的求和,函数的零点
专题:等差数列与等比数列
分析:(1)由已知条件得(an-2n)(an+1)=0,由此能求出an=2n.
(2)bn=
=
(
-
),由此利用裂项求和法能求出Tn+
(
+
).
(2)bn=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:
解:(1)∵正项数列{an}满足an2-(2n-1)an-2n=0,
∴(an-2n)(an+1)=0,
∵an>0,∴an=2n.
(2)∵an=n,bn=
,
∴bn=
=
(
-
)
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)
=
,
∴Tn+
(
+
)
=
+
(
+
)
=
+
(
-
).
∴(an-2n)(an+1)=0,
∵an>0,∴an=2n.
(2)∵an=n,bn=
| 1 |
| (n+2)an |
∴bn=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
=
| n |
| 2(n+1) |
∴Tn+
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| n |
| 2(n+1) |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n+2 |
| 1 |
| n+1 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的应用,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目