题目内容

正项数列{an}满足an2-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an
(2)令bn=
1
(n+2)an
,设数列{bn}的前n项和Tn,求Tn+
1
4
[
1
n+1
+
1
n+2
].
考点:数列的求和,函数的零点
专题:等差数列与等比数列
分析:(1)由已知条件得(an-2n)(an+1)=0,由此能求出an=2n.
(2)bn=
1
n(n+2)
=
1
2
(
1
n
-
1
n+1
)
,由此利用裂项求和法能求出Tn+
1
4
1
n+1
+
1
n+2
).
解答: 解:(1)∵正项数列{an}满足an2-(2n-1)an-2n=0,
∴(an-2n)(an+1)=0,
∵an>0,∴an=2n.
(2)∵an=n,bn=
1
(n+2)an

∴bn=
1
n(n+2)
=
1
2
(
1
n
-
1
n+1
)

∴Tn=
1
2
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)

=
1
2
(1-
1
n+1
)

=
n
2(n+1)

∴Tn+
1
4
1
n+1
+
1
n+2

=
n
2(n+1)
+
1
4
(
1
n+1
+
1
n+2
)

=
1
2
+
1
4
(
1
n+2
-
1
n+1
)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的应用,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网