题目内容
已知向量
=(1,sinx),
=(sin2x,cosx),函数f(x)=
•
,x∈[0,
]
(Ⅰ)求f(x)的最小值;
(Ⅱ)若f(a)=
,求sin2a的值.
| a |
| b |
| a |
| b |
| π |
| 2 |
(Ⅰ)求f(x)的最小值;
(Ⅱ)若f(a)=
| 3 |
| 4 |
(Ⅰ)由向量
=(1,sinx),
=(sin2x,cosx),
所以f(x)=
•
=sin2x+sinxcosx=
+
=
因为x∈[0,
],所以2x-
∈[-
,
],
当2x-
=-
,即x=0时,f(x)有最小值0;
(Ⅱ)由f(a)=
=
,得sin(2a-
)=
∵a∈[0,
],2a-
∈[-
,
],又0<sin(2a-
)=
<
∴2a-
∈(0,
),得cos(2a-
)=
=
.
∴sin2a=sin(2a-
+
)=
[sin(2a-
)+cos(2a-
)]
=
[
+
]=
.
| a |
| b |
所以f(x)=
| a |
| b |
| 1-cos2x |
| 2 |
| sin2x |
| 2 |
| ||||
| 2 |
因为x∈[0,
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
当2x-
| π |
| 4 |
| π |
| 4 |
(Ⅱ)由f(a)=
| ||||
| 2 |
| 3 |
| 4 |
| π |
| 4 |
| ||
| 4 |
∵a∈[0,
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| ||
| 4 |
| ||
| 2 |
∴2a-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
1-(
|
| ||
| 4 |
∴sin2a=sin(2a-
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| π |
| 4 |
=
| ||
| 2 |
| ||
| 4 |
| ||
| 4 |
1+
| ||
| 4 |
练习册系列答案
相关题目