题目内容
| OA |
| a |
| OB |
| b |
| BM |
| 1 |
| 3 |
| BC |
| CN |
| 1 |
| 3 |
| CD |
| a |
| b |
| OM |
| ON |
| MN |
分析:根据向量加法的平行四边形法则,得
=
+
,从而得到
=
(
+
).由向量减法法则得
=(
-
),从而得到
=
=
(
-
),进而算出
=
+
=
+
,最后得到
=
-
=
-
.
| OD |
| a |
| b |
| ON |
| 2 |
| 3 |
| a |
| b |
| BA |
| a |
| b |
| BM |
| 1 |
| 3 |
| BC |
| 1 |
| 6 |
| a |
| b |
| OM |
| OB |
| BM |
| 1 |
| 6 |
| a |
| 5 |
| 6 |
| b |
| MN |
| ON |
| OM |
| 1 |
| 2 |
| a |
| 1 |
| 6 |
| b |
解答:解:∵四边形OADB是平行四边形,
∴
=
-
=
+
,
=
=
(
-
)=
(
-
)
可得
=
=
(
-
),
由向量加法法则,得
=
+
=
+
(
-
)=
+
∵
=
,
=
=
,
∴
=
+
=
+
×
=
=
(
+
)
由向量减法法则,得
=
-
=
(
+
)-(
+
)=
-
综上,可得
=
+
,
=
(
+
),
=
-
∴
| OD |
| OA |
| OB |
| a |
| b |
| BC |
| 1 |
| 2 |
| BA |
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
| a |
| b |
可得
| BM |
| 1 |
| 3 |
| BC |
| 1 |
| 6 |
| a |
| b |
由向量加法法则,得
| OM |
| OB |
| BM |
| b |
| 1 |
| 6 |
| a |
| b |
| 1 |
| 6 |
| a |
| 5 |
| 6 |
| b |
∵
| CN |
| 1 |
| 3 |
| CD |
| OC |
| CD |
| 1 |
| 2 |
| OD |
∴
| ON |
| OC |
| CN |
| 1 |
| 2 |
| OD |
| 1 |
| 3 |
| 1 |
| 2 |
| OD |
| 2 |
| 3 |
| OD |
| 2 |
| 3 |
| a |
| b |
由向量减法法则,得
| MN |
| ON |
| OM |
| 2 |
| 3 |
| a |
| b |
| 1 |
| 6 |
| a |
| 5 |
| 6 |
| b |
| 1 |
| 2 |
| a |
| 1 |
| 6 |
| b |
综上,可得
| OM |
| 1 |
| 6 |
| a |
| 5 |
| 6 |
| b |
| ON |
| 2 |
| 3 |
| a |
| b |
| MN |
| 1 |
| 2 |
| a |
| 1 |
| 6 |
| b |
点评:本题在平行四边形中求向量的线性表示式,着重考查了平面向量的基本定理、向量的加法和减法法则等知识,属于基础题.
练习册系列答案
相关题目