题目内容
【题目】己知点
,直线l与圆C:(x一1)2+(y一2)2=4相交于A,B两点,且OA⊥OB.
![]()
(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;
(2)若直线l过点(0,2),求l的方程.
【答案】(1)
;(2)
.
【解析】
(1)根据题意,求得直线OB的方程
,利用点到直线的距离公式求得圆心
到直线OB的距离,之后应用圆中的特殊三角形,求得弦长;
(2)根据题意,可判断直线的斜率是存在的,设出其方程,与圆的方程联立,得到两根和与两根积,根据OA⊥OB,利用向量数量积等于零得到
所满足的等量关系式,求得结果.
(1)因为直线OA的方程为
,
,
所以直线OB的方程
.
从而圆心
到直线OB的距离为:![]()
所以直线OB被团C截得的弦长为:
.
(2)依题意,直线l的斜率必存在,不妨设其为k,则l的方程为
,
又设
,
.
由
得
,
所以
,
.
从而
.
所以
.
因为
,所以
,即
,解得
.
所以l的方程为
.
![]()
练习册系列答案
相关题目
【题目】共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对
,
两个品牌的共享单车在编号分别为1,2,3,4,5的五个城市的用户人数(单位:十万)进行统计,得到数据如下:
城市品牌 | 1 | 2 | 3 | 4 | 5 |
| 3 | 4 | 12 | 6 | 8 |
| 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有
的把握认为“优城”和共享单车品牌有关?
(Ⅱ)若不考虑其它因素,为了拓展市场,对
品牌要从这五个城市选择三个城市进行宣传.
(i)求城市2被选中的概率;
(ii)求在城市2被选中的条件下城市3也被选中的概率.
附:参考公式及数据
| 0.15 | 0.10 | 0.05 | 0.025 | 0.005 | 0.001 | |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()