题目内容
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数,
),以直角坐标系的原点为极点,以
轴的正半轴为极轴建立坐标系,圆
的极坐标方程为
.
(1)求圆
的直角坐标方程(化为标准方程)及曲线
的普通方程;
(2)若圆
与曲线
的公共弦长为
,求
的值.
【答案】(1) 曲线
的直角坐标方程为
,曲线
的普通方程为
;(2)
.
【解析】分析:(1)由极坐标与直角坐标的互化公式即可得圆
的直角坐标方程;消去参数
即可得曲线
的普通方程;
(2)联立圆C与曲线
,因为圆
的直径为
,且圆
与曲线
的公共弦长为
,即公共弦直线经过圆
的圆心,即可得到答案.
详解:(1)由
,得
,
所以
,
即
,
故曲线
的直角坐标方程为
.
曲线
的普通方程为![]()
(2)联立
,得![]()
因为圆
的直径为
,且圆
与曲线
的公共弦长为
,
所以直线
经过圆
的圆心
,
则
,
又![]()
所以![]()
【题目】下表是某地一家超市在2018年一月份某一周内周2到周6的时间
与每天获得的利润
(单位:万元)的有关数据.
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利润 | 2 | 3 | 5 | 6 | 9 |
(1)根据上表提供的数据,用最小二乘法求线性回归直线方程
;
(2)估计星期日获得的利润为多少万元.
参考公式: ![]()
【题目】某汽车公司对最近6个月内的市场占有率进行了统计,结果如表;
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
市场占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)可用线性回归模型拟合
与
之间的关系吗?如果能,请求出
关于
的线性回归方程,如果不能,请说明理由;
(2)公司决定再采购
两款车扩大市场,
两款车各100辆的资料如表:
车型 | 报废年限(年) | 合计 | 成本 | |||
1 | 2 | 3 | 4 | |||
| 10 | 30 | 40 | 20 | 100 | 1000元/辆 |
| 15 | 40 | 35 | 10 | 100 | 800元/辆 |
平均每辆车每年可为公司带来收入
元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命部是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的平均数作为决策依据,应选择采购哪款车型?
参考数据:
,
,
,
.
参考公式:相关系数
;
回归直线方程为
,其中
,
.