题目内容
6.甲乙丙三人一起参加机动车驾驶证科目考三试后,与丁相聚,丁询问甲乙丙的考试结果,甲说:“我通过了.”,乙说:“我和甲都通过了.”,丙说:“我和乙都通过了.”甲乙丙三人有且只有一个人说的内容与考试结果不完全相同,甲乙丙中没有通过的是丙.分析 分别假设甲和乙的说法考试结果不完全相同,得到矛盾,故可得丙的说法与考试结果不完全相同,再根据甲乙所说判断即可
解答 解:假设甲说的内容与考试结果不完全相同,则甲没有通过,则乙的说法考试结果不完全相同,故甲说的是正确的,
假设乙说的内容与考试结果不完全相同,则甲和乙最多有1人通过,根据丙所说可知乙丙通过了,于是可得甲没有通过,则与甲的说法相矛盾,则乙的说法是正确,
故丙的说法与考试结果不完全相同,于是可得丙没有通过,
故答案为:丙.
点评 本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.
练习册系列答案
相关题目
16.若复数z=$\frac{2}{1+i}$+(1-i)2,则|z|等于( )
| A. | $\sqrt{10}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{5}$ |
17.下列能正确反映《必修1》中指数幂的推广过程的是( )
| A. | 整数指数幂→有理数指数幂→无理数指数幂 | |
| B. | 有理数指数幂→整数指数幂→无理数指数幂 | |
| C. | 整数指数幂→无理数指数幂→有理数指数幂 | |
| D. | 无理数指数幂→有理数指数幂→整数指数幂 |
14.已知向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为θ,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,$\overrightarrow{OP}$=t$\overrightarrow{OA}$,$\overrightarrow{OQ}$=(1-t)$\overrightarrow{OB}$,|$\overrightarrow{PQ}$|在t0时取最小值,当0<t0<$\frac{1}{4}$时,cosθ的取值范围为( )
| A. | (-$\frac{1}{2}$,0) | B. | (-$\frac{1}{2}$,-$\frac{1}{4}$) | C. | ($\frac{1}{4}$,1) | D. | (-$\frac{1}{2}$,$\frac{1}{4}$) |
1.
我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式f(x)=anxn+an-1xn-1+…+a1x+a0的值的秦九韶算法,即将f(x)改写成如下形式:f(x)=(…((anx+an-1)x+an-2)x+…+a1)x+a0,首先计算最内层一次多项式的值,然后由内向外逐层计算一次多项式的值,这种算法至今仍是比较先进的算法,将秦九韶算法用程序框图表示如图,则在空白的执行框内应填入( )
| A. | v=vx+ai | B. | v=v(x+ai) | C. | v=aix+v | D. | v=ai(x+v) |
11.有如图所示的程序框图,则该程序框图表示的算法的功能是( )

| A. | 输出使1×2×4×…×n≥1 000成立的最大整数n+2 | |
| B. | 输出使1×2×4×…×n≥1 000成立的最小整数n+2 | |
| C. | 输出使1×2×4×…×n≥1 000成立的最小整数n | |
| D. | 输出使1×2×4×…×n≥1 000成立的最大整数n |
18.某几何体的三视图如图所示,则其体积为( )

| A. | 80 | B. | 160 | C. | 240 | D. | 480 |
15.已知i是虚数单位,则$\frac{1+i}{1-i}$=( )
| A. | 1 | B. | -1 | C. | i | D. | -i |
6.设f(x)是定义在R上的偶函数,且在(-∞,0]上是增函数,设$a=f({log_4}7),b=f({log_{\frac{1}{2}}}3),c=f({2^{\sqrt{2}}})$,则a,b,c的大小关系是( )
| A. | c<a<b | B. | c<b<a | C. | b<c<a | D. | a<b<c |