题目内容
12.已知函数$f(x)=\left\{\begin{array}{l}{lo{g_2}({{x^2}-2ax+3a}),x≥1}\\{1-{x^2},x<1}\end{array}$的值域为R,则常数a的取值范围是( )| A. | (-1,1]∪[2,3) | B. | (-∞,1]∪[2,+∞) | C. | (-1,1)∪[2,3) | D. | (-∞,0]{1}∪[2,3) |
分析 利用分段函数求解分段求解函数的值域,然后列出不等式求解即可.
解答 解:函数$f(x)=\left\{\begin{array}{l}{lo{g_2}({{x^2}-2ax+3a}),x≥1}\\{1-{x^2},x<1}\end{array}$,
当x<1时,f(x)=1-x2≤1,
∴x≥1时,f(x)=$lo{g_2}({{x^2}-2ax+3a}),x≥1$的最小值小于1,
因为y=x2-2ax+3a的开口向上,对称轴为x=a,
若a≤1,当x≥1时,函数是增函数,最小值为f(1)=log2(1+a),可得log2(1+a)≤1,解得a∈(-1,1];
若a>1,最小值为$f(a)=lo{g_2}({3a-{a^2}})$,可得$lo{g_2}({3a-{a^2}})≤1$,解得a∈[2,3),
常数a的取值范围是(-1,1]∪[2,3),
故选:A.
点评 本题考查分段函数的应用,函数的值域,考查转化思想以及计算能力.
练习册系列答案
相关题目
3.甲、乙、丙三人随意坐下,乙不坐中间的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
20.在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程$y=\hat bx+a$;
(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
(参考公式:$y=\hat bx+a$,其中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}},a=\overline y-\hat b\overline x$)
| x(个) | 2 | 3 | 4 | 5 | 6 |
| y(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
(参考公式:$y=\hat bx+a$,其中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}},a=\overline y-\hat b\overline x$)
7.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).已知甲厂生产的产品共有98件,下表是乙厂的5件产品的测量数据:
(1)求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).
| 编号 | 1 | 2 | 3 | 4 | 5 |
| x | 169 | 178 | 166 | 175 | 180 |
| y | 75 | 80 | 77 | 70 | 81 |
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).
17.已知集合$A=\left\{{y\left|{\frac{y}{x}=0}\right.}\right\}$,集合B={x|(x-1)x>0},则A∩∁RB=( )
| A. | {x|0≤x≤1} | B. | {x|0<x<1} | C. | {0} | D. | ∅ |