题目内容
3.已知x,y满足约束条件,$\left\{\begin{array}{l}{y≤1}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$,则目标函数z=2x-y的最大值为( )| A. | 1 | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{y≤1}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{y=1}\\{x-y-1=0}\end{array}\right.$,解得A(2,1).
化目标函数z=2x-y为y=2x-z.
由图可得,当直线y=2x-z过A时,直线在y轴上的截距最小,z有最大值为2×2-1=3.
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
14.已知集合 P={x||x|>x},$Q=\left\{{x\left|{y=\sqrt{1-x}}\right.}\right\}$,则 P∩Q=( )
| A. | (-∞,0) | B. | (0,1] | C. | (-∞,1] | D. | [0,1] |
11.
已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则异面直线BD1与AA1所成的角的余弦值为( )
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{13}}{4}$ | C. | $\frac{\sqrt{39}}{13}$ | D. | $\frac{3}{4}$ |
15.已知:对任意x∈[0,1]都有$\sqrt{1-{x^2}}-cosωx≥0$成立,且ω>0则ω的取值范围为( )
| A. | $[\frac{π}{4},\frac{π}{2}]$ | B. | $(\frac{π}{4},\frac{π}{2}]$ | C. | $[\frac{π}{2},\frac{3π}{2}]$ | D. | $[\frac{π}{2},\frac{3π}{2})$ |