题目内容

设函数f(x)=
2x+1
x
(x>0),数列{an}满足a1=1,an=f(
1
an-1
)
,(n∈N*,且n≥2).
(1)求数列{an}的通项公式;
(2)设Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若T2n>4tn2对n∈N*恒成立,求实数t的取值范围.
考点:数列递推式,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知得an=f(
1
an-1
)=2+
1
1
an-1
=an-1+2
,(n≥2),从而an-an-1=2,由此能求出an=2n-1.
(2)法1:T2n=a1a2-a2a3+a3a4-a4a5+…+(-1)2n-1a2na2n+1=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1)=-4(a2+a4+a6+…+a2n)=-8n2-4n,从而t<
-8n2-4n
4n2
=-2-
1
n
,由此能求出实数t的取值范围.
法2:a2n-1a2n-a2na2n+1=a2n(a2n-1-a2n+1)=-4(4n-1)=-16n+4T2n)=-8n2-4n,从而t<
-8n2-4n
4n2
=-2-
1
n
,由此能求出实数t的取值范围.
解答: 解:(1)∵f(x)=
2x+1
x
(x>0),
an=f(
1
an-1
)=2+
1
1
an-1
=an-1+2
,(n≥2)
∴an-an-1=2,…(2分)
又∵a1=1,∴数列{an}是以1为首项,公差为2的等差数列.
∴an=2n-1.(n∈N*)…(4分)
(2)解法1:T2n=a1a2-a2a3+a3a4-a4a5+…+(-1)2n-1a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1
=-4(a2+a4+a6+…+a2n
=-4×
a2+a2n
2
×n=-2n(3+4n-1)=-8n2-4n
,…(8分)
T2n>4tn2恒成立,∴t<
-8n2-4n
4n2
=-2-
1
n

y=-2-
1
n
在n∈N*单调递增,
-2-
1
n
≥-3
,即t<-3.…(12分)
解法2:a2n-1a2n-a2na2n+1=a2n(a2n-1-a2n+1
=-4(4n-1)=-16n+4T2n
=(a1a2-a2a3)+(a3a4-a4a5)+…+(a2n-1a2n-a2na2n+1
=-16(1+2+3+…+n)+4n
=-16n×
1+n
2
+4n=-8n2-4n
…(8分)
T2n>4tn2恒成立,∴t<
-8n2-4n
4n2
=-2-
1
n

y=-2-
1
n
在n∈N*单调递增,
-2-
1
n
≥-3
,即t<-3.…(12分)
点评:本题考查数列的通项公式的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网