题目内容

3.如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于点DE,求证:BD=DE=EC.

分析 连接OD、OE,构建等边△OBD、△ODE、△OEC;然后由等边三角形的性质和圆心角、弧、弦的关系证得BD=DE=EC.

解答 证明:如图,连接OD、OE.
∵△ABC是等边三角形,
∴∠B=60°.
又∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°.
同理,△EOC是等边三角形,则∠EOC=60°.
∵BC是⊙O的直径,
∴∠DOE=180°-∠BOD-∠EOC=60°,
∴$\widehat{BD}$=$\widehat{DE}$=$\widehat{EC}$,
∴BD=DE=EC.

点评 本题考查了圆周角定理,等边三角形的性质以及圆周角、弧、弦的关系.解题的难点是辅助线的做法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网