题目内容
3.分析 连接OD、OE,构建等边△OBD、△ODE、△OEC;然后由等边三角形的性质和圆心角、弧、弦的关系证得BD=DE=EC.
解答
证明:如图,连接OD、OE.
∵△ABC是等边三角形,
∴∠B=60°.
又∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°.
同理,△EOC是等边三角形,则∠EOC=60°.
∵BC是⊙O的直径,
∴∠DOE=180°-∠BOD-∠EOC=60°,
∴$\widehat{BD}$=$\widehat{DE}$=$\widehat{EC}$,
∴BD=DE=EC.
点评 本题考查了圆周角定理,等边三角形的性质以及圆周角、弧、弦的关系.解题的难点是辅助线的做法.
练习册系列答案
相关题目
18.已知c≠0,且a,b,c,2b成等差数列,则$\frac{a}{c}$=( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
8.一个几何体的三视图如图所示,则这个几何体的体积为( )

| A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |