题目内容
已知向量|
|=|
|=1,且
•
=-
,求:
(1)|
+
|;
(2)
与
-
的夹角.
| a |
| b |
| a |
| b |
| 1 |
| 2 |
(1)|
| a |
| b |
(2)
| a |
| b |
| a |
分析:(1)由已知代入模长公式计算可得;(2)同理可得|
-
|和
•(
-
),代入夹角公式可得夹角的余弦值,根据范围可得角.
| b |
| a |
| a |
| b |
| a |
解答:解:(1)由题意可得|
+
|=
=
=
=1;
(2)同理可得|
-
|=
=
•(
-
)=
•
-
2=-
-12=-
,
故cos<
,
-
>=
=-
,
又<
,
-
>∈[0,π],
故
与
-
的夹角<
,
-
>=
| a |
| b |
(
|
=
|
12+2×(-
|
(2)同理可得|
| b |
| a |
12-2×(-
|
| 3 |
| a |
| b |
| a |
| a |
| b |
| a |
| 1 |
| 2 |
| 3 |
| 2 |
故cos<
| a |
| b |
| a |
| ||||||
|
|
| ||
| 2 |
又<
| a |
| b |
| a |
故
| a |
| b |
| a |
| a |
| b |
| a |
| 5π |
| 6 |
点评:本题考查平面向量的模长和夹角的求解,涉及整体代换的思想,属中档题.
练习册系列答案
相关题目