题目内容
(2010•南宁二模)已知向量|
-
|=1,|
|=|
|=1则(
+
)2的值为( )
| a |
| b |
| a |
| b |
| a |
| b |
分析:由|
-
|=1,两边同时平方结合|
|=|
|=1可求
•
=
,代入(
+
)2=
2+2
•
+
2可求
| a |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
| a |
| a |
| b |
| b |
解答:解:∵|
-
|=1,|
|=|
|=1
∴(
-
)2=
2-2
•
+
2=1
∴
•
=
∴(
+
)2=
2+2
•
+
2=3
故选C
| a |
| b |
| a |
| b |
∴(
| a |
| b |
| a |
| a |
| b |
| b |
∴
| a |
| b |
| 1 |
| 2 |
∴(
| a |
| b |
| a |
| a |
| b |
| b |
故选C
点评:本题主要考察了平面向量的数量积的性质的简单应用,属于基础性试题
练习册系列答案
相关题目