题目内容

若f(x)=3sin(2x+ϕ)+a,对任意实数x都有,且,则实数a的值等于( )
A.-1
B.-7或-1
C.7或1
D.±7
【答案】分析:利用对任意实数t都有得到x=为f(x)的对称轴,得到f()为最大值或最小值,得到3+a=-4或-3+a=-4求出a的值.
解答:解:因为对任意实数t都有
所以x=为f(x)的对称轴,
所以f()为最大值或最小值,
所以3+a=-4或-3+a=-4
所以a=-7或a=-1
故选B.
点评:本题考查抽象函数的应用,在解决三角函数的性质问题时,一般先化简三角函数,然后利用整体角处理的方法来解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网