题目内容

20.“斐波那契数列“是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a7=13;若a2018=m,则数列{an}的前2016项和是m-1(用△>0表示).

分析 ①由a1=1,a2=1,an+2=an+1+an(n∈N*),a3=1+1=2,同理可得:a4,a5,a6,a7
②由于a1=1,a2=1,an+an+1=an+2(n∈N*),可得a1+a2=a3,a2+a3=a4,a3+a4=a5,…,a2016+a2017=a2018.以上累加求和即可得出.

解答 解:①∵a1=1,a2=1,an+2=an+1+an(n∈N*),∴a3=1+1=2,同理可得:a4=3,a5=5,a6=8,则a7=13.
②∵a1=1,a2=1,an+an+1=an+2(n∈N*),
∴a1+a2=a3
a2+a3=a4
a3+a4=a5
…,
a2015+a2016=a2017
a2016+a2017=a2018
以上累加得,
a1+a2+a2+a3+a3+a4+…+2a2016+a2017=a3+a4+…+a2018
∴a1+a2+a3+a4+…+a2016=a2018-a2=m-1,
故答案分别为:13;m-1.

点评 本题考查了递推关系、“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网