题目内容
20.“斐波那契数列“是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a7=13;若a2018=m,则数列{an}的前2016项和是m-1(用△>0表示).分析 ①由a1=1,a2=1,an+2=an+1+an(n∈N*),a3=1+1=2,同理可得:a4,a5,a6,a7.
②由于a1=1,a2=1,an+an+1=an+2(n∈N*),可得a1+a2=a3,a2+a3=a4,a3+a4=a5,…,a2016+a2017=a2018.以上累加求和即可得出.
解答 解:①∵a1=1,a2=1,an+2=an+1+an(n∈N*),∴a3=1+1=2,同理可得:a4=3,a5=5,a6=8,则a7=13.
②∵a1=1,a2=1,an+an+1=an+2(n∈N*),
∴a1+a2=a3,
a2+a3=a4,
a3+a4=a5,
…,
a2015+a2016=a2017
a2016+a2017=a2018.
以上累加得,
a1+a2+a2+a3+a3+a4+…+2a2016+a2017=a3+a4+…+a2018,
∴a1+a2+a3+a4+…+a2016=a2018-a2=m-1,
故答案分别为:13;m-1.
点评 本题考查了递推关系、“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
11.已知圆C1:(x+2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,A,B分别是圆C1和圆C2上的动点,点P是y轴上的动点,则|PB|-|PA|的最大值为( )
| A. | $\sqrt{2}$+4 | B. | 5$\sqrt{2}-4$ | C. | $\sqrt{2}$ | D. | $\sqrt{26}$ |
5.已知$\overrightarrow{a}$,$\overrightarrow{b}$是任意的两个向量,则下列关系式中不恒成立的是( )
| A. | |$\overrightarrow{a}$|+|$\overrightarrow{b}$|≥|$\overrightarrow{a}$-$\overrightarrow{b}$| | B. | |$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$|•|$\overrightarrow{b}$| | ||
| C. | ($\overrightarrow{a}$-$\overrightarrow{b}$)2=$\overrightarrow{a}$-2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2 | D. | ($\overrightarrow{a}$-$\overrightarrow{b}$)3=$\overrightarrow{a}$3-3$\overrightarrow{a}$2•$\overrightarrow{b}$+3$\overrightarrow{a}$•$\overrightarrow{b}$2-$\overrightarrow{b}$3 |