题目内容
已知,则展开式中,项的系数为( )
A. B. C. D.
袋中有大小、质地相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得2分,摸出黑球,得1分,则3次摸球所得总分至少是4分的概率是 .
已知函数f(x)满足f(x)=f(),当x∈[1,3]时,f(x)=lnx,若在区间[,3]内,曲线g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是( ).
A.(0,) B.(0,) C.[,) D.[,)
(本小题满分12分)在如图所示的几何体中,平面,∥,是的中点,,,.
(1)证明平面;
(2)求二面角的余弦值的大小.
设函数,若对任意给定的,都存在唯一的,满足,则正实数的最小值是 ( )
已知为虚数单位,为实数,复数在复平面内对应的点为,则“”是“点在第四象限”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条
(本小题满分12分)已知△的三边,,所对的角分别为,,,且.
(1)求的值;
(2)若△外接圆的半径为14,求△的面积.
(本小题满分14分)已知圆心在轴上的圆过点和,圆的方程为.
(1)求圆的方程;
(2)由圆上的动点向圆作两条切线分别交轴于,两点,求的取值范围.
(本小题满分13分)已知椭圆:的焦距为,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆的标准方程;
(2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点,,
①证明:平分线段(其中为坐标原点),
②当值最小时,求点的坐标.