题目内容
若Sn=
+
+
+
+…+
+
,则
Sn=
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 22 |
| 2 |
| 32 |
| 1 |
| 2n |
| 2 |
| 3n |
| lim |
| n→∞ |
2
2
.分析:由Sn=
+
+
+
+…+
+
=(
+
+…+
)+…+2(
+
+••+
) )),利用等比数列的求和公式可求
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 22 |
| 2 |
| 32 |
| 1 |
| 2n |
| 2 |
| 3n |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
解答:解:∵Sn=
+
+
+
+…+
+
=(
+
+…+
)+…+2(
+
+••+
) ))
=
+2•
=2-(
)n-(
)n
则
Sn=
(2-
-
)=2
故答案为:2
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 22 |
| 2 |
| 32 |
| 1 |
| 2n |
| 2 |
| 3n |
=(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
=
| ||||
1-
|
| ||||
1-
|
=2-(
| 1 |
| 2 |
| 1 |
| 3 |
则
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2n |
| 1 |
| 3n |
故答案为:2
点评:本题主要考查了分组求和及等比数列的求和公式的应用,数列极限的求解,属于公式的综合应用.
练习册系列答案
相关题目