题目内容
13.复数z=$\frac{3+i}{1-i}$(其中i为虚数单位)对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 直接利用复数的除法的运算法则化简求解即可.
解答 解:复数z=$\frac{3+i}{1-i}$=$\frac{(3+i)(1+i)}{(1-i)(1+i)}$=$\frac{2+4i}{2}$=1+2i.
复数对应点(1,2)在第一象限.
故选:A.
点评 本题考查复数代数形式混合运算,考查计算能力.
练习册系列答案
相关题目
4.设变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10<0\\ x+y-8≤0\end{array}\right.$,则目标函数z=3x-4y的取值范围是( )
| A. | [-11,3) | B. | [-11,3] | C. | (-11,3) | D. | (-11,3] |
1.弹簧振子的振动在简谐振动,如表给出的振子在完成一次全振动的过程中的时间t与位移y之间的对应数据,根据这些数据求出这个振子的振动的函数解析式为y=-20cos($\frac{π}{6{t}_{0}}$t).
| t | 0 | t0 | 2t0 | 3t0 | 4t0 | 5t0 | 6t0 | 7t0 | 8t0 | 9t0 | 10t0 | 11t0 | 12t0 |
| y | -20.0 | -17.8 | -10.1 | 0.1 | 10.3 | 17.1 | 20.0 | 17.7 | 10.3 | 0.1 | -10.1 | -17.8 | -20.0 |