题目内容
17.若函数f(x)=$\left\{\begin{array}{l}{x-1,0<x≤2}\\{-1,-2≤x≤0}\end{array}\right.$,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=-$\frac{1}{2}$.分析 依题意,可求得g(x)=$\left\{\begin{array}{l}ax-1,-2≤x≤0\\(1+a)x-1,0<x≤2\end{array}\right.$,依题意,g(-1)=g(1)即可求得实数a的值.
解答 解:∵f(x)=$\left\{\begin{array}{l}x-1,0<x≤2\\-1,-2≤x≤0\end{array}\right.$,
∴g(x)=f(x)+ax=$\left\{\begin{array}{l}ax-1,-2≤x≤0\\(1+a)x-1,0<x≤2\end{array}\right.$,
∵g(x)=$\left\{\begin{array}{l}ax-1,-2≤x≤0\\(1+a)x-1,0<x≤2\end{array}\right.$为偶函数,
∴g(-1)=g(1),即-a-1=1+a-1=a,
∴2a=-1,
∴a=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.
点评 本题考查函数奇偶性的性质,求得g(x)的解析式后,利用特值法g(-1)=g(1)是解决问题的关键,属于中档题.
练习册系列答案
相关题目
7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a}&{x<0}\\{lnx}&{x>0}\end{array}\right.$,若函数f(x)的图象在点A、B处的切线重合,则a的取值范围是( )
| A. | (-1,+∞) | B. | (-ln2,+∞) | C. | (-2,-1) | D. | (1,2) |
12.已知$\overrightarrow{AB}=({2,1})$,$\overrightarrow{CD}=({5,5})$,则$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为( )
| A. | $\frac{{-3\sqrt{2}}}{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $\frac{{3\sqrt{15}}}{2}$ | D. | $\frac{{-3\sqrt{15}}}{2}$ |
2.若直线l经过点$A(1,\sqrt{3})$和B(1,0),则直线l的倾斜角为( )
| A. | 0° | B. | 60° | C. | 90° | D. | 不存在 |