题目内容
已知椭圆
+
=1(a>0,b>0)的左顶点是A,过焦点F(c,0)(c>0,为椭圆的半焦距)作倾斜角为θ的直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线x=
(称为椭圆的右准线)于P,Q两点.
(1)若当θ=30°时有
=3
,求椭圆的离心率;
(2)若离心率e=
,求证:
•
为定值.
| x2 |
| a2 |
| y2 |
| b2 |
| a2 |
| c |
(1)若当θ=30°时有
| MF |
| FN |
(2)若离心率e=
| ||
| 2 |
| FP |
| FQ |
分析:(1)作MM1,NN1垂直准线于M1,N1,NH垂直MM1于H,设|NF|=m,则|FM|=3m,根据椭圆的第二定义有:|NN1| =
,|MM1| =
,故|MH|=
,在Rt△NMH中,∠NMH=30°,由此能求出e.
(2)当e=
时,a=
c,则椭圆方程化为:x2+2y2-2c2=0,准线:x=
=2c,设MN的方程为x=ty+c,M(x1,y1),N(x2,y2),P(2c,yP),Q(2c,yQ),由A,M,P三点共线,得P(2c,
),
=(c,
),由A,N,Q三点共线,得Q(2c,
),
=(c,
),由此能够证明
•
为定值.
| m |
| e |
| 3m |
| e |
| 2m |
| e |
(2)当e=
| ||
| 2 |
| 2 |
| a2 |
| c |
| (a+2c)y1 |
| x1+a |
| FP |
| (a+2c)y1 |
| x1+a |
| (a+2c)y2 |
| x2+a |
| FQ |
| (a+2c)y2 |
| x2+a |
| FP |
| FQ |
解答:解:(1)如图,作MM1,NN1垂直准线于M1,N1,NH垂直MM1于H,
设|NF|=m,则|FM|=3m,根据椭圆的第二定义有:
|NN1| =
,|MM1| =
,∴|MH|=
,
在Rt△NMH中,∠NMH=30°,
∴
=
=cos30°,
解得e=
.
(2)当e=
时,a=
c,
则椭圆方程化为:x2+2y2-2c2=0,
准线:x=
=2c,
设MN的方程为x=ty+c,M(x1,y1),N(x2,y2),P(2c,yP),Q(2c,yQ),
由A,M,P三点共线,得P(2c,
),
=(c,
),
由A,N,Q三点共线,得Q(2c,
),
=(c,
),
•
=c2+
,①
把x=ty+c代入x2+2y2-2c2=0,得(2+t2)y2+2cty-c2=0,
,
∴(a+2c)2y1y2=-
,②
x1x2+a(x1+x2)+a2
=t2y1 y2+(ct+at)(y1+y2)+(a+c) 2
=t2(-
)+(ct+at)(-
)+(a+c)2
=
=
.③
∵a=
c,
∴将②③代入①,整理得
•
=c2-
=0.
设|NF|=m,则|FM|=3m,根据椭圆的第二定义有:
|NN1| =
| m |
| e |
| 3m |
| e |
| 2m |
| e |
在Rt△NMH中,∠NMH=30°,
∴
| |MH| |
| |MN| |
| ||
| 4m |
解得e=
| ||
| 3 |
(2)当e=
| ||
| 2 |
| 2 |
则椭圆方程化为:x2+2y2-2c2=0,
准线:x=
| a2 |
| c |
设MN的方程为x=ty+c,M(x1,y1),N(x2,y2),P(2c,yP),Q(2c,yQ),
由A,M,P三点共线,得P(2c,
| (a+2c)y1 |
| x1+a |
| FP |
| (a+2c)y1 |
| x1+a |
由A,N,Q三点共线,得Q(2c,
| (a+2c)y2 |
| x2+a |
| FQ |
| (a+2c)y2 |
| x2+a |
| FP |
| FQ |
| (a+2c)2y1y2 |
| x1x2+a(x1+x2 )+a2 |
把x=ty+c代入x2+2y2-2c2=0,得(2+t2)y2+2cty-c2=0,
|
∴(a+2c)2y1y2=-
| c2(a+2c)2 |
| 2+t2 |
x1x2+a(x1+x2)+a2
=t2y1 y2+(ct+at)(y1+y2)+(a+c) 2
=t2(-
| c2 |
| 2+t |
| 2ct |
| 2+t2 |
=
| (a2-2c2)t2+2(a+c)2 |
| 2+t2 |
=
| 2(a+c)2 |
| 2+t2 |
∵a=
| 2 |
∴将②③代入①,整理得
| FP |
| FQ |
| c2(a+2c)2 |
| 2(a+c)2 |
点评:本题考查椭圆方程的求法和向量数量积为定值的证明,具体涉及到椭圆的简单性质,根与系数的关系,椭圆的离心率等基本知识的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目