题目内容

19.如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,平面FBC⊥平面ABCD.△FBC中BC边上的高FH=2,EF=$\frac{3}{2}$.求该多面体的体积.

分析 由已知中多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF与面AC的距离为2,我们易求出四棱锥E-ABCD的体积,然后根据由题意求出VF-ABCD与几何体的体积,即可得到正确选项.

解答 解:∵多面体ABCDEF中,
面ABCD是边长为3的正方形,
EF∥AB,平面FBC⊥面ABCD,
△FBC中BC边上的高FH=2,EF=$\frac{3}{2}$,
∴EF∥平面ABCD,
则G到平面ABCD的距离2,
将几何体变形如图,使得FG=AB,
三棱锥E-BCG的体积为:$\frac{1}{3}$×$\frac{1}{2}$×3×2×$\frac{3}{2}$=$\frac{3}{2}$,
∴原几何体的体积为:$\frac{1}{2}$×3×2×3-$\frac{3}{2}$=$\frac{15}{2}$.

点评 本题考查的知识点是组合几何体的面积、体积问题,是常考题目.本题可以直接求解,但是麻烦.解答组合体问题的常用方法是分割法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网