题目内容

已知:等比数列{an}中,a1=3,a4=81,(n∈N*).
(1)若{bn}为等差数列,且满足b2=a1,b5=a2,求数列{bn}的通项公式;
(2)若数列{bn}满足bn=log3an,求数列{
1
bnbn+1
}
的前n项和Tn
(Ⅰ)在等比数列{an}中,a1=3,a4=81.
所以,由a4=a1q3得3q3=81,
解得q=3.
因此,an=3×3n-1=3n.在等差数列{bn}中,
根据题意,b2=a1=3,b5=a2=9,,可得,
d=
b5-b2
5-2
=2
所以,bn=b2+(n-2)d=2n-1
(Ⅱ)若数列{bn}满足bn=log3an
则bn=log33n=n,
因此有
1
b1b2
+
1
b3b2
+…+
1
bnbn+1
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=
n
n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网