题目内容
已知:等比数列{an}中,a1=3,a4=81,(n∈N*).
(1)若{bn}为等差数列,且满足b2=a1,b5=a2,求数列{bn}的通项公式;
(2)若数列{bn}满足bn=log3an,求数列{
}的前n项和Tn.
(1)若{bn}为等差数列,且满足b2=a1,b5=a2,求数列{bn}的通项公式;
(2)若数列{bn}满足bn=log3an,求数列{
| 1 |
| bnbn+1 |
(Ⅰ)在等比数列{an}中,a1=3,a4=81.
所以,由a4=a1q3得3q3=81,
解得q=3.
因此,an=3×3n-1=3n.在等差数列{bn}中,
根据题意,b2=a1=3,b5=a2=9,,可得,
d=
=2
所以,bn=b2+(n-2)d=2n-1
(Ⅱ)若数列{bn}满足bn=log3an,
则bn=log33n=n,
因此有
+
+…+
=(1-
)+(
-
)+…+(
-
)=
所以,由a4=a1q3得3q3=81,
解得q=3.
因此,an=3×3n-1=3n.在等差数列{bn}中,
根据题意,b2=a1=3,b5=a2=9,,可得,
d=
| b5-b2 |
| 5-2 |
所以,bn=b2+(n-2)d=2n-1
(Ⅱ)若数列{bn}满足bn=log3an,
则bn=log33n=n,
因此有
| 1 |
| b1b2 |
| 1 |
| b3b2 |
| 1 |
| bnbn+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目