题目内容
3.下列函数中,既是偶函数又在(-∞,0)内为增函数的是( )| A. | y=($\frac{1}{2}$)x | B. | y=x-2 | C. | y=x2+1 | D. | y=log3(-x) |
分析 逐一分析给定四个函数的奇偶性,及在(-∞,0)内的单调性,可得答案.
解答 解:函数y=($\frac{1}{2}$)x是非奇非偶函数,在(-∞,0)内为减函数,故A不满足条件;
函数y=x-2既是偶函数又在(-∞,0)内为增函数,故B满足条件;
y=x2+1是偶函数,但在(-∞,0)内为减函数,故C不满足条件;
y=log3(-x)是非奇非偶函数,在(-∞,0)内为减函数,故D不满足条件;
故选:B
点评 本题考查的知识点是函数的单调性判断与证明,函数的奇偶性,熟练掌握各种基本初等函数的图象和性质,是解答的关键.
练习册系列答案
相关题目
13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线x-2y+3=0平行,则双曲线的方程为( )
| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{8}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{4}-{y^2}=1$ | D. | ${x^2}-\frac{y^2}{4}=1$ |
14.两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东40°,则灯塔A与灯塔B之间的距离为( )
| A. | $\sqrt{3}$akm | B. | 2akm | C. | $\sqrt{5}$akm | D. | $\sqrt{7}$akm |
11.函数y=($\frac{1}{2}$)${\;}^{2{x}^{2}-3x+1}$的递减区间为( )
| A. | [$\frac{3}{4}$,+∞) | B. | (-∞,$\frac{3}{4}$] | C. | (-∞,1) | D. | (1,+∞) |
8.若直线y=x+b与曲线(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3)有公共点,则实数b的取值范围是( )
| A. | [1-2$\sqrt{2}$,3] | B. | [1-$\sqrt{2}$,3] | C. | [-1,1+2$\sqrt{2}$] | D. | [1-2$\sqrt{2}$,1+2$\sqrt{2}$] |
13.已知F为双曲线$C:\frac{x^2}{3a}-\frac{y^2}{3}=1(a>0)$的一个焦点,则点F到C的一条渐近线的距离为( )
| A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{3}a$ | D. | 3a |