题目内容

8.已知a1,a2,a3,a4是各项均为正数的等差数列,其公差d大于零,若线段l1,l2,l3,l4的长分别为a1,a2,a3,a4,则(  )
A.对任意的d,均存在以l1,l2,l3为三边的三角形
B.对任意的d,均不存在以为l1,l2,l3三边的三角形
C.对任意的d,均存在以l2,l3,l4为三边的三角形
D.对任意的d,均不存在以l2,l3,l4为三边的三角形

分析 利用等差数列的通项公式及其性质、三角形两边之和大于第三边,即可判断出结论.

解答 解:A:对任意的d,假设均存在以l1,l2,l3为三边的三角形,∵a1,a2,a3,a4是各项均为正数的等差数列,其公差d大于零,∴a2+a3>a1,a3+a1=2a2>a2
而a1+a2-a3=a1-d不一定大于0,因此不一定存在以为l1,l2,l3三边的三角形,故不正确;
B:由A可知:当a1-d>0时,存在以为l1,l2,l3三边的三角形,因此不正确;
C:对任意的d,由于a3+a4,>a2,a2+a4=2a1+4d=a1+2d+a3>0,a2+a3-a4=a1>0,因此均存在以l2,l3,l4为三边的三角形,正确;
D.由C可知不正确.
故选:C.

点评 本题考查了等差数列的通项公式及其性质、三角形两边之和大于第三边,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网