题目内容
20.若命题p:?x0∈R,ax02+4x0+a≥-2x02+1是真命题,求实数a的取值范围.分析 若命题p:?x0∈R,ax02+4x0+a≥-2x02+1是真命题,则a+2≥0,或$\left\{\begin{array}{l}a+2<0\\△=16-4(a+2)(a-1)≥0\end{array}\right.$,解得答案.
解答 解:若命题p:?x0∈R,ax02+4x0+a≥-2x02+1是真命题,
则:?x0∈R,(a+2)x02+4x0+a-1≥0是真命题,
故a+2≥0,或$\left\{\begin{array}{l}a+2<0\\△=16-4(a+2)(a-1)≥0\end{array}\right.$,
解得:a≥-3.
点评 本题以命题的真假判断与应用为载体,考查了特称命题,难度中档.
练习册系列答案
相关题目
10.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{4}$],则该椭圆离心率的最大值为( )
| A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 1 |