题目内容
已知f(3)=2,f′
=-2,则
=( )
|
| lim |
| x→3 |
| 2x-3f(x) |
| x-3 |
分析:通过对分式分离常数,极限化为
,利用f(3)=2替换
值的2,通过极限的定义求出极限值即可.
| lim |
| x→3 |
| 2x-6+6-3f(x) |
| x-3 |
| lim |
| x→3 |
| f(x)-2 |
| x-3 |
解答:解:
=
=2-3
=2-3
=2-3f′(3)
=2-3×(-2)
=8.
故选C.
| lim |
| x→3 |
| 2x-3f(x) |
| x-3 |
=
| lim |
| x→3 |
| 2x-6+6-3f(x) |
| x-3 |
=2-3
| lim |
| x→3 |
| f(x)-2 |
| x-3 |
=2-3
| lim |
| x→3 |
| f(x)-f(3) |
| x-3 |
=2-3f′(3)
=2-3×(-2)
=8.
故选C.
点评:本题是中档题,考查函数的极限的定义的应用,极限的运算法则,考查计算能力.
练习册系列答案
相关题目