题目内容

设函数f(x)=|x+2|-|x-2|
(I)解不等式f(x)≥2;
(Ⅱ)当x∈R,0<y<1时,证明:|x+2|-|x-2|≤
1
y
+
1
1-y
考点:绝对值不等式的解法
专题:计算题,证明题,不等式的解法及应用
分析:(Ⅰ)运用绝对值的定义,去掉绝对值,得到分段函数,再由各段求范围,最后求并集即可;
(II)由分段函数可得f(x)的最大值,再由基本不等式求得
1
y
+
1
1-y
的最小值,即可得证.
解答: (Ⅰ)解:由已知可得:f(x)=
4,x≥2
2x,-2<x<2 
-4,   x≤-2

由x≥2时,4>2成立;-2<x<2时,2x≥2,即有x≥1,则为1≤x<2.
所以,f(x)≥2的解集为{x|x≥1};
(II)证明:由(Ⅰ)知,|x+2|-|x-2|≤4,
由于0<y<1,
1
y
+
1
1-y
=(
1
y
+
1
1-y
)[y+(1-y)]=2+
1-y
y
+
y
1-y
≥2+2=4,
则有|x+2|-|x-2|≤
1
y
+
1
1-y
点评:本题考查绝对值不等式的解法,考查不等式恒成立,注意转化为函数的最值,考查基本不等式的运用:求最值,考查运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网