题目内容

8.有一块半径为R(R为正常数)的半圆形空地,开发商计划征地建一个游泳池ABCD和其附属设施,附属设施占地形状是等腰△CDE,其中O为圆心,A,B在圆的直径上,C,D,E在半圆周上,如图.
(1)设∠BOC=θ,征地面积为f(θ),求f(θ)的表达式,并写出定义域;
(2)当θ满足g(θ)=f(θ)+R2sinθ取得最大值时,开发效果最佳,求出开发效果最佳的角θ的值,并求出g(θ)的最大值.

分析 (1)连结OC,OE,用θ表示出BC,OB,代入梯形面积公式即可得出f(θ);
(2)令sinθ+cosθ=t,使用换元法求出g(θ)的最值及对应的θ.

解答 解:(1)连结OE,OC,
在Rt△OBC中,BC=Rsinθ,OB=Rcosθ,
∴S梯形OBCE=$\frac{1}{2}$(Rsinθ+R)Rcosθ=$\frac{1}{2}$R2(1+sinθ)cosθ,
∴f(θ)=2S梯形OBCE=R2(1+sinθ)cosθ,θ∈(0,$\frac{π}{2}$).
(2)g(θ)=R2(1+sinθ)cosθ+R2sinθ=R2(sinθ+cosθ+sinθcosθ),
令t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),则t∈(1,$\sqrt{2}$],sinθcosθ=$\frac{{t}^{2}-1}{2}$,
∴g(θ)=R2($\frac{{t}^{2}-1}{2}+t$)=$\frac{{R}^{2}}{2}$[(t+1)2-2],
令h(t)=$\frac{{R}^{2}}{2}$[(t+1)2-2],则h(t)在(1,$\sqrt{2}$]上单调递增,
∴当t=$\sqrt{2}$即θ=$\frac{π}{4}$时,h(t)取得最大值($\frac{1}{2}+\sqrt{2}$)R2

点评 本题考查了函数模型的应用,函数最值的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网