题目内容

16.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2b,又sinA,sinC,sinB成等差数列.
(1)求cosA的值;
(2)若${S_{△ABC}}=\frac{{8\sqrt{15}}}{3}$,求c的值.

分析 (1)sinA,sinC,sinB成等差数列.由正弦定理得a+b=2c,a=2b,利用余弦定理可得cosA的值;
(2)由cosA的值,求解sinA的值,根据S=$\frac{1}{2}$bcsinA,即可求解c的值.

解答 解:(Ⅰ)∵sinA,sinC,sinB成等差数列,
∴sinA+sinB=2sinC
由正弦定理得a+b=2c
又a=2b,可得$b=\frac{2}{3}c$,
∴$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{\frac{4}{9}{c^2}+{c^2}-\frac{16}{9}{c^2}}}{{2×\frac{2}{3}{c^2}}}=-\frac{1}{4}$;
(2)由(1)可知$cosA=-\frac{1}{4}$,
得$sinA=\frac{{\sqrt{15}}}{4}$,
∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}×\frac{2}{3}{c^2}×\frac{{\sqrt{15}}}{4}=\frac{{\sqrt{15}}}{12}{c^2}$,
∵${S_{△ABC}}=\frac{{8\sqrt{15}}}{3}$,
∴$\frac{{\sqrt{15}}}{12}{c^2}=\frac{{8\sqrt{15}}}{3}$,
解得:$c=4\sqrt{2}$
故得${S_{△ABC}}=\frac{{8\sqrt{15}}}{3}$时,c的值为4$\sqrt{2}$.

点评 本题考查了等差数列的性质以及正余弦定理的运用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网