题目内容
在四面体中,,,且,
为中点,则与平面所成角的正弦值为( )
A. B. C. D.
(本小题满分12分)已知集合,集合.
(1)若,求和;
(2)若,求实数的取值范围.
直线的倾斜角是( )
某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:
假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论)
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(Ⅲ)记X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.
如图,已知四棱锥,底面为菱形,平面,,
分别是的中点.
(1)证明:;
(2)若,求二面角的余弦值.
用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面面积比为,截去的棱锥的高是,则棱台的高是( )
若对数函数与幂函数的图象相交于一点,则 .
已知函数f(x)=|x﹣1|+|x+1|(x∈R)
(1)证明:函数f(x)是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;
(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
(本小题满分12分)
在等差数列中,公差,是与的等比中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列的前项和为,求.