题目内容

9.已知以y=±$\sqrt{3}$x为渐近线的双曲线D:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦点分别为F1,F2,若P为双曲线D右支上任意一点,则$\frac{{|P{F_1}|-|P{F_2}|}}{{|P{F_1}|+|P{F_2}|}}$的最大值是$\frac{1}{2}$.

分析 利用y=±$\sqrt{3}$x为渐近线可得b=$\sqrt{3}$a,c=2a,利用0<$\frac{{|P{F_1}|-|P{F_2}|}}{{|P{F_1}|+|P{F_2}|}}$≤$\frac{2a}{2c}$=$\frac{a}{c}$,即可得出结论.

解答 解:∵双曲线D:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线是y=±$\sqrt{3}$x,
∴$\frac{b}{a}$=$\sqrt{3}$,可得b=$\sqrt{3}$a,c=2a
∵P为双曲线D右支上一点,
∴|PF1|-|PF2|=2a
而|PF1|+|PF2|≥|F1F2|=2c
∴0<$\frac{{|P{F_1}|-|P{F_2}|}}{{|P{F_1}|+|P{F_2}|}}$≤$\frac{2a}{2c}$=$\frac{a}{c}$
∵c=2a,
∴$\frac{{|P{F_1}|-|P{F_2}|}}{{|P{F_1}|+|P{F_2}|}}$的取值范围是(0,$\frac{1}{2}$].
故$\frac{{|P{F_1}|-|P{F_2}|}}{{|P{F_1}|+|P{F_2}|}}$的最大值是$\frac{1}{2}$
故答案为:$\frac{1}{2}$.

点评 本题考查双曲线的方程与性质,考查双曲线的定义,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网