题目内容
6.i是虚数单位,复数$\frac{7+i}{3+4i}$=( )| A. | $\frac{17}{25}$+$\frac{31}{25}$i | B. | -1+i | C. | 1-i | D. | -$\frac{17}{7}$+$\frac{25}{7}$i |
分析 直接利用复数代数形式的乘除运算化简得答案.
解答 解:$\frac{7+i}{3+4i}$=$\frac{(7+i)(3-4i)}{(3+4i)(3-4i)}=\frac{25-25i}{25}=1-i$,
故选:C.
点评 本题考查复数代数形式的乘除运算,是基础的计算题.
练习册系列答案
相关题目
14.若函数f(x)=x3-3ax+1在区间(0,1)内有极小值,则a的取值范围是( )
| A. | (0,1) | B. | (0,1] | C. | [0,1) | D. | [0,1] |
1.
若将一个质点随机投入如图所示的长方形ABCD中,其中AB=4,BC=2,则质点落在以AB为直径的半圆外的空白处的概率是( )
| A. | 1-$\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | 1-$\frac{π}{2}$ | D. | $\frac{π}{2}$ |
11.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
(ii)据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
| 优分 | 非优分 | 总计 | |
| 男生 | 9 | 21 | 30 |
| 女生 | 11 | 9 | 20 |
| 总计 | 20 | 30 | 50 |
(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.
附:
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
16.已知f(x)=|x-1|-|x|,设u=f($\frac{5}{16}$),v=f(u),s=f(v),则s的值为( )
| A. | $\frac{3}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 0 |