题目内容
6.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为( )| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
分析 设线段PF1的中点为M,另一个焦点F2,利用OM是△FPF2的中位线,以及椭圆的定义求出直角三角形OMF1的三边之长,使用勾股定理求离心率.
解答
解:设线段PF1的中点为M,另一个焦点F2,
由题意知,OM=b,又OM是△FPF1的中位线,
∴OM=$\frac{1}{2}$PF2=b,PF2=2b,由椭圆的定义知 PF1=2a-PF2=2a-2b,
又MF1=$\frac{1}{2}$PF1=$\frac{1}{2}$(2a-2b)=a-b,又OF1=c,
直角三角形OMF1中,由勾股定理得:(a-b)2+b2=c2,又a2-b2=c2,
可得2a=3b,故有4a2=9b2=9(a2-c2),由此可求得离心率 e=$\frac{c}{a}$=$\frac{\sqrt{5}}{3}$,
故选:D.
点评 本题考查椭圆的离心率的求法,注意运用离心率公式和椭圆的定义:椭圆上任一点到两个焦点的距离之和等于常数2a.
练习册系列答案
相关题目