题目内容

10.已知质点运动的轨迹方程为$\left\{\begin{array}{l}{x=a+tcosθ}\\{y=b+tsinθ}\end{array}\right.$(t为参数),求运动质点从时间t1到t2经过的距离.

分析 由已知得$\left\{\begin{array}{l}{{x}_{1}=a+{t}_{1}cosθ}\\{{y}_{1}=b={t}_{1}sinθ}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=a+{t}_{2}cosθ}\\{{y}_{2}=a+{t}_{2}sinθ}\end{array}\right.$,从而运动质点从时间t1到t2经过的距离|M1M2|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$,由此能求出结果.

解答 解:∵质点运动的轨迹方程为$\left\{\begin{array}{l}{x=a+tcosθ}\\{y=b+tsinθ}\end{array}\right.$(t为参数),
∴$\left\{\begin{array}{l}{{x}_{1}=a+{t}_{1}cosθ}\\{{y}_{1}=b={t}_{1}sinθ}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=a+{t}_{2}cosθ}\\{{y}_{2}=a+{t}_{2}sinθ}\end{array}\right.$,
∴M1(a+t1cosθ,b+t1sinθ),M2(a+t2cosθ,b+t2sinθ),
∴|M1M2|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$
=$\sqrt{({t}_{1}-{t}_{2})^{2}(co{s}^{2}α+si{n}^{2}α)}$
=|t1-t2|.
∴运动质点从时间t1到t2经过的距离为|t1-t2|.

点评 本题考查质点运动距离的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网