题目内容

3.在△ABC中,已知角A、B、C的对边分别为a、b、c,a=7,b=3,c=5,求△ABC的最大内角与sinC的值.

分析 利用正余弦定理,直接求解.

解答 解:由于a>c>b,所以A是△ABC的最大内角;
利用公式:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{9+25-49}{30}=-\frac{1}{2}$,
又因为A∈(0°,180°),所以A=120°,
由正弦定理:$\frac{a}{sinA}=\frac{c}{sinC}$得sinC=$\frac{c}{a}sinA$═$\frac{5}{7}sin12{0}^{0}$=$\frac{5\sqrt{3}}{14}$.
故△ABC的最大内角为A=120°和sinC=$\frac{5\sqrt{3}}{14}$.

点评 本题考查了正余弦定理的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网