ÌâÄ¿ÄÚÈÝ

6£®Èçͼ£¬A£¬B£¬CÈýµØÓÐÖ±µÀÏàͨ£¬AB=10 Ç§Ã×£¬AC=6 Ç§Ã×£¬BC=8ǧÃ×£®Ïּס¢ÒÒÁ½ÈËͬʱ´ÓAµØ³ö·¢ÔÈËÙǰÍùBµØ£¬¾­¹ýtСʱ£¬ËûÃÇÖ®¼äµÄ¾àÀëΪf£¨t£©£¨µ¥Î»£ºÇ§Ã×£©£®¼×µÄ·ÏßÊÇAB£¬ËÙ¶ÈΪ10ǧÃ×/Сʱ£¬ÒҵķÏßÊÇACB£¬ËÙ¶ÈΪ16ǧÃ×/Сʱ£®ÒÒµ½´ïBµØºóÔ­µØµÈ´ý£®Éèt=t1ʱÒÒµ½´ïCµØ£®
£¨1£©Çót1Óëf£¨t1£© µÄÖµ£»
£¨2£©ÒÑÖª¶Ô½²»úµÄÓÐЧͨ»°¾àÀëÊÇ3ǧÃ×£¬µ±t1¡Üt¡Ü1ʱ£¬Çóf£¨t£©µÄ±í´ïʽ£¬²¢ÅжÏf£¨t£© ÔÚ[t1£¬1]ÉϵÄ×î´óÖµÊÇ·ñ³¬¹ý3£¿ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃt1=$\frac{3}{8}$h£¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃf£¨t1£©=CD=$\sqrt{A{C}^{2}+A{D}^{2}-2AC•ADcosA}$=$\frac{3\sqrt{41}}{4}$£»
£¨2£©µ±t1=$\frac{3}{8}$¡Üt¡Ü$\frac{7}{8}$ʱ£¬ÓÉÒÑÖªÊý¾ÝºÍÓàÏÒ¶¨Àí¿ÉµÃf£¨t£©=PQ=2$\sqrt{2{5t}^{2}-42t+18}$£¬µ±$\frac{7}{8}$£¼t¡Ü1ʱ£¬f£¨t£©=10-10t£¬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃt1=$\frac{3}{8}$h£¬¼ÇÒÒµ½Cʱ¼×ËùÔÚµØÎªD£¬ÔòAD=$\frac{15}{4}$£¨Ç§Ã×£©£®
ÔÚÈý½ÇÐÎACDÖУ¬ÓÉÓàÏÒ¶¨Àíf£¨t1£©=CD=$\sqrt{A{C}^{2}+A{D}^{2}-2AC•ADcosA}$=$\frac{3\sqrt{41}}{4}$£¨Ç§Ã×£©£®
£¨2£©¼×µ½´ïBÓÃʱ1Сʱ£¬ÒÒµ½´ïCÓÃʱ$\frac{3}{8}$Сʱ£¬´ÓAµ½B×ÜÓÃʱ$\frac{7}{8}$Сʱ£¬
µ±t1=$\frac{3}{8}$¡Üt¡Ü$\frac{7}{8}$ʱ£¬
f£¨t£©=$\sqrt{£¨14-16t£©^{2}+£¨10-10t£©^{2}-2£¨14-16t£©£¨10-10t£©•\frac{4}{5}}$=2$\sqrt{2{5t}^{2}-42t+18}$£¬
µ±$\frac{7}{8}$£¼t¡Ü1ʱ£¬f£¨t£©=10-10t£¬
¡àf£¨t£©=$\left\{\begin{array}{l}{2\sqrt{25{t}^{2}-42t+18}£¬\frac{3}{8}¡Üt¡Ü\frac{7}{8}}\\{10-10t£¬\frac{7}{8}£¼t¡Ü1}\end{array}\right.$£¬
ÒòΪf£¨t£©ÔÚ[$\frac{3}{8}$£¬$\frac{7}{8}$]ÉϵÄ×î´óÖµÊÇf£¨$\frac{3}{8}$£©=$\frac{3\sqrt{41}}{4}$£¬f£¨t£©ÔÚ[$\frac{7}{8}$£¬1]ÉϵÄ×î´óÖµÊÇf£¨$\frac{7}{8}$£©=$\frac{5}{4}$£¬
ËùÒÔf£¨t£©ÔÚ[$\frac{3}{8}$£¬1]ÉϵÄ×î´óÖµÊÇ$\frac{3\sqrt{41}}{4}$£¬³¬¹ý3£®

µãÆÀ ±¾Ì⿼²é½âÈý½ÇÐεÄʵ¼ÊÓ¦Óã¬Éæ¼°ÓàÏÒ¶¨ÀíºÍ·Ö¶Îº¯Êý£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø