题目内容
已知P是椭圆
+
=1(a>b>0)上异于长轴端点A、B的任意点,若直线PA、PB的斜率乘积kPA•kPB=-
,则该椭圆的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 3 |
分析:根据A,B连线经过坐标原点,可得A,B一定关于原点对称,利用直线PA,PB的斜率乘积,可寻求几何量之间的关系,从而可求离心率.
解答:解:∵A,B连线经过坐标原点,∴A,B一定关于原点对称,
设A(x1,y1),B(-x1,-y1),P(x,y)
∴kPA•kPB=
×
=
∵
+
=1,
+
=1,
∴两方程相减可得
=-
∵kPA•kPB=-
,
∴-
=-
∴
=
∴
=
,
=
∴e=
.
故选A.
设A(x1,y1),B(-x1,-y1),P(x,y)
∴kPA•kPB=
| y1-y |
| x1-x |
| -y1-y |
| -x1-x |
y2-
| ||
x2-
|
∵
| x 2 |
| a2 |
| y 2 |
| b2 |
| x12 |
| a2 |
| y12 |
| b2 |
∴两方程相减可得
y2-
| ||
x2-
|
| b2 |
| a2 |
∵kPA•kPB=-
| 2 |
| 3 |
∴-
| b2 |
| a2 |
| 2 |
| 3 |
∴
| b2 |
| a2 |
| 2 |
| 3 |
∴
| a2-c2 |
| a2 |
| 2 |
| 3 |
| c |
| a |
| ||
| 3 |
∴e=
| ||
| 3 |
故选A.
点评:本题主要考查椭圆的几何性质,考查点差法,关键是设点代入化简,应注意椭圆几何量之间的关系.
练习册系列答案
相关题目