题目内容

6.一艘海轮从A处出发,以40海里/时的速度沿东偏南50°方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,求B,C两点间的距离.

分析 画出示意图,利用正弦定理求解即可.

解答 (10分)
解:如图所示,由已知条件可得∠CAB=30°,∠ABC=105°,即AB=40×$\frac{1}{2}$=20(海里).
故∠BCA=45°.(6分)
又由正弦定理可得$\frac{AB}{sin45°}$=$\frac{BC}{sin30°}$,(8分)
因此,BC=$\frac{20×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=10$\sqrt{2}$(海里).(10分).
B,C两点间的距离10$\sqrt{2}$(海里).

点评 本题考查三角形的实际应用,正弦定理的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网