题目内容

15.平面内给定三个向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(2,1).
(1)求满足$\overrightarrow{a}$=m$\overrightarrow{b}$+n$\overrightarrow{c}$的实数m,n;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k.

分析 (1)利用向量相等即可得出.
(2)利用向量共线定理即可得出.

解答 解:(1)$\overrightarrow{a}$=m$\overrightarrow{b}$+n$\overrightarrow{c}$,∴(1,3)=m(-1,2)+n(2,1).
∴$\left\{\begin{array}{l}{-m+2n=1}\\{2m+n=3}\end{array}\right.$,解得m=n=1.
(2)$\overrightarrow{a}$+k$\overrightarrow{c}$=(1+2k,3+k),2$\overrightarrow{b}$-$\overrightarrow{a}$=(-3,1),
∵($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),∴-3(3+k)=1+2k,解得k=-2.

点评 本题考查了向量共线定理、平面向量基本定理、向量坐标运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网