题目内容

函数y=tan(x+
π4
)
的定义域为
 
分析:利用正切函数的定义域,直接求出函数y=tan(x+
π
4
)
的定义域即可.
解答:解|:函数y=tan(x+
π
4
)
的有意义,必有x+
π
4
≠kπ+
π
2
  k∈z
,所以函数的定义域{x|x≠kπ+
π
4
,k∈z}

故答案为:{x|x≠kπ+
π
4
,k∈z}
点评:本题是基础题,考查正切函数的定义域的求法,结果必须写成集合的形式,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网