题目内容
3.若($\sqrt{x}$-$\frac{1}{x}$)n的二项展开式中各项的二项式系数的和是64,则n=6.分析 利用二项展开式中各项的二项式系数的和是2n,即可得出n.
解答 解:($\sqrt{x}$-$\frac{1}{x}$)n的二项展开式中各项的二项式系数的和是64,则2n=64,解得n=6.
故答案为:6.
点评 本题考查了二项式定理的性质及其应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
20.我国古代数学名著《九章算术》有“米谷粒分”问题:粮仓开仓收粮,有人送来米1494石,检验发现米内夹谷,抽样取米一把,数得270粒内夹谷30粒,则这批米内夹谷约为( )
| A. | 17石 | B. | 166石 | C. | 387石 | D. | 1310石 |
11.已知数列{an}为等比数列,且a2013+a2015=$\int_0^2{\sqrt{4-{x^2}}}$dx,则a2014(a2012+2a2014+a2016)的值为( )
| A. | π2 | B. | 4π2 | C. | π | D. | 2π |
18.已知函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为( )
| A. | [$\frac{19π}{4}$,$\frac{27π}{4}$) | B. | [$\frac{9π}{2}$,$\frac{13π}{2}$) | C. | [$\frac{17π}{4}$,$\frac{25π}{4}$) | D. | [4π,6π) |
15.当m变化时,不在直线$(1-{m^2})x+2my-2\sqrt{3}m-2=0$上的点构成区域G,P(x,y)是区域G内的任意一点,则 $\frac{{\frac{3}{2}x+\frac{{\sqrt{3}}}{2}y}}{{\sqrt{3}\sqrt{{x^2}+{y^2}}}}$的取值范围是( )
| A. | (1,2) | B. | [$\frac{1}{2},1$] | C. | ($\frac{1}{2},1$) | D. | (2,3) |
12.甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于95为正品,小于95为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
(1)试分别估计甲机床、乙机床生产的零件为正品的概率;
(2)甲机床生产一件零件,若是正品可盈利160元,次品则亏损20元;乙机床生产一件零件,若是正品可盈利200元,次品则亏损40元,在(1)的前提下,现需生产这种零件2件,以获得利润的期望值为决策依据,应该如何安排生产最佳?
| 测试指标 | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
| 机床甲 | 8 | 12 | 40 | 32 | 8 |
| 机床乙 | 7 | 18 | 40 | 29 | 6 |
(2)甲机床生产一件零件,若是正品可盈利160元,次品则亏损20元;乙机床生产一件零件,若是正品可盈利200元,次品则亏损40元,在(1)的前提下,现需生产这种零件2件,以获得利润的期望值为决策依据,应该如何安排生产最佳?