ÌâÄ¿ÄÚÈÝ
10£®£¨1£©ÊÇ·ñ´æÔÚµãM£¬Ê¹¿ìÍ§ÑØº½ÏßP¡úA¡úM»òP¡úB¡úMµÄ·³ÌÏàµÈ£®Èç´æÔÚ£¬Ôò½¨Á¢Êʵ±µÄÖ±½Ç×ø±êϵ£¬Çó³öµãMµÄ¹ì¼£·½³Ì£¬ÇÒ»³ö¹ì¼£µÄ´óÖÂͼÐΣ»Èç²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨2£©ÎÊ×ß˽´¬ÔÚÔõÑùµÄÇøÓòÉÏʱ£¬Â·ÏßP¡úA¡úM±È·ÏßP¡úB¡úMµÄ·³Ì¶Ì£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©½¨Á¢×ø±êϵ£¬ÀûÓÃË«ÇúÏߵ͍Ò壬¿ÉµÃ½áÂÛ£»
£¨2£©×ß˽´¬ÔÚÖ±ÏßlµÄ×ó²à£¬ÇÒÔÚ£¨1£©ÖÐÇúÏßµÄ×ó²àµÄÇøÓòʱ£¬Â·ÏßP¡úA¡úM×î¶Ì£®
½â´ð ½â£º£¨1£©½¨Á¢ÈçͼËùʾµÄ×ø±êϵ£¬|MA|-|MB|=2£¬![]()
¡àMµÄ¹ì¼£ÊÇË«ÇúÏßµÄÓÒÖ§£¬|AB|=$\sqrt{64+100-80}$=2$\sqrt{21}$£¬
¡à$a=1£¬c=\sqrt{21}£¬{b}^{2}=20$£¬
¡àMµÄ¹ì¼£·½³ÌÊÇ${x}^{2}-\frac{{y}^{2}}{20}$=1£¨x£¾1£¬y£¾0£©£»
£¨2£©×ß˽´¬ÔÚÖ±ÏßlµÄ×ó²à£¬ÇÒÔÚ£¨1£©ÖÐÇúÏßµÄ×ó²àµÄÇøÓòʱ£¬Â·ÏßP¡úA¡úM×î¶Ì£®![]()
ÀíÓÉ£ºÉèAMµÄÑÓ³¤ÏßÓ루1£©ÖÐÇúÏß½»ÓÚµãN£¬ÔòPA+AN=PB+BN£¬
PA+AM=PA+AN-MN=PB+BN-MN£¼PB+BM£®
µãÆÀ ±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²éË«ÇúÏߵ͍ÒåÓë·½³Ì£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÒÑÖªÇúÏßy=f£¨x£©ÔÚx=5´¦µÄÇÐÏß·½³ÌÊÇy=-x+5£¬Ôòf£¨5£©Óëf'£¨5£©·Ö±ðΪ£¨¡¡¡¡£©
| A£® | 3£¬3 | B£® | 3£¬-1 | C£® | -1£¬3 | D£® | 0£¬-1 |
1£®ÒÑ֪ʵÊýa£¼0£¬º¯Êý$f£¨x£©=\left\{\begin{array}{l}{x^2}+2a£¬\;x£¼1\\-x£¬x¡Ý1\end{array}\right.$£¬Èôf£¨1-a£©¡Ýf£¨1+a£©£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬-2] | B£® | [-2£¬-1] | C£® | [-1£¬0£© | D£® | £¨-¡Þ£¬0£© |
18£®½«6±¾²»Í¬µÄÊýѧÓÃÊé·ÅÔÚͬһ²ãÊé¼ÜÉÏ£¬Ôò²»Í¬µÄ·Å·¨ÓУ¨¡¡¡¡£©
| A£® | 6 | B£® | 24 | C£® | 120 | D£® | 720 |
2£®ÏÂÁв»µÈʽÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | a3£¾a2£¨a£¾0£¬ÇÒa¡Ù1£© | B£® | 0.30.8£¾0.30.7 | C£® | ¦Ð-1£¾e-1 | D£® | log34£¾log43 |
19£®É躯Êýf£¨x£©ÔÚx=1´¦´æÔÚµ¼Êý£¬Ôò$\lim_{¡÷x¡ú0}\frac{f£¨1+¡÷x£©-f£¨1£©}{3¡÷x}$=£¨¡¡¡¡£©
| A£® | $\frac{1}{3}f'£¨1£©$ | B£® | 3f'£¨1£© | C£® | f'£¨1£© | D£® | f'£¨3£© |