题目内容
【题目】已知椭圆
的离心率为
,且经过点
.
(1)求椭圆的标准方程;
(2)过点
的直线
交椭圆于
两点,
是
轴上的点,若
是以
为斜边的等腰直角三角形, 求直线
的方程.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)将点坐标代入椭圆方程,与离心率联立方程组解得a,b,(2)将等腰三角形转化为
的中垂线方程过
点,且
点到直线
距离等于AB一半,先设直线方程,与椭圆方程联立,根据韦达定理以及弦长公式可得AB长以及AB中点,根据点斜式求
的中垂线方程,求与x轴交点得Q点坐标,根据点到直线距离公式列方程解得直线斜率,即得直线方程.
试题解析:(1)由
,设椭圆方程为![]()
则
,椭圆方程为
(2)设
的中点坐标
,
,![]()
则由
得
由
得
,
,
的中垂线方程为
,所以![]()
点
到直线
的距离为
,
,所以
,解得
直线
的方程为![]()
【题目】2017年6月深圳地铁总公司对深圳地铁1号线30个站的工作人员的服务态度进行了满意度调查,其中世界之窗、白石洲、高新园、深大、桃园、大新6个站的得分情况如下:
地铁站 | 世界之窗 | 白石州 | 高新园 | 深大 | 桃园 | 大新 |
满意度得分 | 70 | 76 | 72 | 70 | 72 | x |
已知6个站的平均得分为75分.
(1)求大新站的满意度得分x,及这6个站满意度得分的标准差;
(2)从表中前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.
【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:
)落在各个小组的频数分布如下表:
数据分组 |
|
|
|
|
|
|
|
频数 | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根据频数分布表,求该产品尺寸落在
的概率;
(2)求这50件产品尺寸的样本平均数
.(同一组中的数据用该组区间的中点值作代表);
(3)根据频数分布对应的直方图,可以认为这种产品尺寸
服从正态分布
,其中
近似为样本平均值
,
近似为样本方差
,经计算得
.利用该正态分布,求
.
附:(1)若随机变量
服从正态分布
,则
,
;
(2)
.