ÌâÄ¿ÄÚÈÝ

5£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²MµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cost}\\{y=-2+2sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=m£¬£¨m¡ÊR£©£¬ÈôÖ±ÏßlÓëÔ²MÏཻÓÚA£¬BÁ½µã£¬¡÷MABµÄÃæ»ýΪ2£¬ÔòmֵΪ£¨¡¡¡¡£©
A£®-1»ò3B£®1»ò5C£®-1»ò-5D£®2»ò6

·ÖÎö Ô²MµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cost}\\{y=-2+2sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£º£¨x-1£©2+£¨y+2£©2=4£®Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=m£¬Õ¹¿ª¿ÉµÃ£º$\sqrt{2}¦Ñ¡Á\frac{\sqrt{2}}{2}$£¨sin¦È-cos¦È£©=m£¬ÀûÓû¥»¯¹«Ê½»¯ÎªÖ±Ïß·½³Ìx-y+m=0£®¿ÉµÃÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀëd£®ÒÑÖª¡÷MABµÄÃæ»ýΪ2£¬¿ÉµÃ$\frac{1}{2}¡Á$|AB|¡Ád=2£®ÓÖ|AB|=2d£¬¿ÉµÃ$\frac{1}{2}¡Á2\sqrt{4-{d}^{2}}$¡Ád=2£¬½âµÃd£¬m£®

½â´ð ½â£ºÔ²MµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cost}\\{y=-2+2sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£º£¨x-1£©2+£¨y+2£©2=4£¬¿ÉµÃM£¨1£¬-2£©£¬°ë¾¶r=2£®
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñsin£¨¦È-$\frac{¦Ð}{4}$£©=m£¬Õ¹¿ª¿ÉµÃ£º$\sqrt{2}¦Ñ¡Á\frac{\sqrt{2}}{2}$£¨sin¦È-cos¦È£©=m£¬»¯Îª£ºy-x-m=0£¬¼´x-y+m=0£®
¡àÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|1+2+m|}{\sqrt{2}}$=$\frac{|3+m|}{\sqrt{2}}$£®
¡ß¡÷MABµÄÃæ»ýΪ2£¬¡à$\frac{1}{2}¡Á$|AB|¡Á$\frac{|3+m|}{\sqrt{2}}$=2£®
ÓÖ|AB|=2$\sqrt{4-£¨\frac{3+m}{\sqrt{2}}£©^{2}}$£¬¡à$\frac{1}{2}¡Á2\sqrt{4-{d}^{2}}$¡Ád=2£¬
½âµÃd=$\sqrt{2}$£®
¡à$\frac{|3+m|}{\sqrt{2}}$=$\sqrt{2}$£¬½âµÃm=-1»ò-5£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤¹«Ê½¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø