题目内容

已知等比数列{an}通项式为an=(
1
2
n,设bn=nan,求数列{bn}的前n项和Sn
考点:数列的求和
专题:等差数列与等比数列
分析:利用错位相减法求解.
解答: 解:∵an=(
1
2
n,bn=nan
∴bn=n•(
1
2
n
Sn=1•
1
2
+2•(
1
2
)2+3•(
1
2
)3
+…+n•(
1
2
)n
,①
1
2
Sn
=1•(
1
2
)2+2•(
1
2
)3+3•(
1
2
)4
+…+n•(
1
2
)n+1
,②
①-②,得:
1
2
Sn
=
1
2
+(
1
2
)2+(
1
2
)3+…+(
1
2
)n
-n•(
1
2
)n+1

=
1
2
(1-
1
2n
)
1-
1
2
-n•(
1
2
)n+1

=1-(
1
2
)n
-n•(
1
2
)n+1

∴Sn=2-
n+2
2n
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网