题目内容

10.已知f(x-1)是偶函数,且在(0,+∞)上单调递增,下列说法正确的是(  )
A.f(2${\;}^{\frac{1}{8}}$)>f(($\frac{1}{8}$)2)>f(log2($\frac{1}{8}$))B.f(($\frac{1}{8}$)2)>f(2${\;}^{\frac{1}{8}}$)>f(log2($\frac{1}{8}$))
C.f(2${\;}^{\frac{1}{8}}$)>f(log2($\frac{1}{8}$))>f(($\frac{1}{8}$)2D.f(($\frac{1}{8}$)2)>f(log2($\frac{1}{8}$))>f(2${\;}^{\frac{1}{8}}$)

分析 根据函数奇偶性和单调性的关系进行判断即可.

解答 解:∵f(x-1)是偶函数,
∴f(x-1)关于x=0对称,
则f(x)关于x=-1对称,
则f(-1+x)=f(-1-x),
则log2($\frac{1}{8}$)=-3,2${\;}^{\frac{1}{8}}$=$\root{8}{2}$∈(1,2),0<(($\frac{1}{8}$)2<1,
则f(-3)=f(-1-2)=f(-1+2)=f(1),
∵f(x-1)是偶函数,且在(0,+∞)上单调递增,
∴f(x)在(-1,+∞)上单调递增,
则f(2${\;}^{\frac{1}{8}}$)>f(1)>f(($\frac{1}{8}$)2),
即f(2${\;}^{\frac{1}{8}}$)>f(log2($\frac{1}{8}$))>f(($\frac{1}{8}$)2),
故选:C

点评 本题主要考查函数值的大小比较,根据函数奇偶性和单调性的性质进行转化是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网