题目内容
设,函数(为自然对数的底数),且函数的图象与函数的图象在处有公共的切线.
(Ⅰ)求的值;
(Ⅱ)讨论函数的单调性;
(Ⅲ)证明:当时,在区间内恒成立.
选修4-1:几何证明选讲
如图, 已知为圆的直径, 为圆上一点, 连接并延长使,连接并延长交圆于点,过点作圆的切线, 切点为.
(1)证明:;
(2)若,求的长度.
已知,则等于 ( )
A. B. C. D.
已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点,若,则( )
A.1 B. C. D.2
已知抛物线的准线过双曲线的一个焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为( )
A. B.
C. D.
一种饮料每箱装有6听.经检测,某箱中每听的容量(单位:)如以下茎叶图所示.
(Ⅰ)求这箱饮料的平均容量和容量的中位数;
(Ⅱ)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听得容量为250的概率.
利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示.若从这120个正整数中任意取出一个,设其最高位数字为的概率为.下列选项中,最难反映与的关系是( )
已知为偶函数,当时,,则满足的实数的个数为 .
选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合.若曲线的参数方程为(为参数),直线的极坐标方程为.
(1)将曲线的参数方程化为极坐标方程;
(2)由直线上一点向曲线引切线,求切线长的最小值.