题目内容
为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间
(单位:天)变化的函数关系式近似为
若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.
(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?
(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a(
)个单位的药剂,要使接下来的4天中能够持续有效净化,试求
的最小值(精确到0.1,参考数据:
取1.4).
(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?
(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a(
(1)可达8天;(2)a的最小值为
.
试题分析:(1)根据题中条件每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间
试题解析:(1)因为一次喷洒4个单位的净化剂,
所以浓度
则当
当
综合得
(2)设从第一次喷洒起,经x(
浓度
因为
所以
令
练习册系列答案
相关题目